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1 Introduction
The formalism of six operations was originally introduced by A.Grothendieck and his col-

laborators in the study of étale cohomology. It naturally leads to many well-known results in
cohomology theory like duality and Lefschetz trace formula. This partially justifies the slogan that
the formalism of six operations are enhanced cohomology theories. In this talk, I will introduce
the formalism of six operations. I will explain the relation between it and some cohomology the-
ories (Topological, coherent, l-adic). Moreover, I will talk about the application of it to a nice
class of derived algebraic stacks. And show that this leads to some nontrivial results of algebraic
(homotopy) K-theory for stacks.

2 Formalism of six operations
[Gal21] The six operations here refers to pullback-pushforward adjunct f ∗ ⊣ f∗, exceptional

adjunct f! ⊣ f !, and tensor-hom adjunct ⊗ ⊣ Hom. In algebraic geometry, f ∗, f∗, f! exist in the
category of sheaves in abelian groups. For example, f! is the pushforward with compact support
defined as

Γ(U, f!(F )) = {s ∈ F(f−1U)| s has compact support}

Note that there is a transformation f! ⇒ f∗ induced by the inclusion of sections. However, f!
doesn’t always admits a right adjoint as pushforward of sheaves. To resolve it, we may pass to the
derived category of sheaves (denoted by D(Sh(X))). Indeed, for some nice (e.g. locally compact
Hausdorff) space, there exists f ! : D(Sh(Y ))→ D(Sh(X)) as the right adjoint of Rf!.

Recall that if f : X → ∗ is a map of schemes, Rif∗(F) = H i(X,F) where Rif∗ : Sh(X) →
Sh(∗) = Mod(Z) is the derived functor of f∗. Similarly, Rif!(F) = H i

c(X,F). For derived
category of sheaves, the derived functor Rf∗ : D(Sh(X)) → D(Ab) satisfies H iRf∗(F) =
Rif∗(F) = H i(X,F). So we may view the formalism of six operations as enhanced cohomology
theory.

Now for greater generality, we assume that C : SmB → {closed tensor triangulated categories}
(or symmetric monoidal presentable∞-categories) is a functor that satisfies ’the formalism of six
operations’. In this case we may make the following definition, for the structure map p : X → B,

H• = p∗p
∗1, H•

c = p!p
∗1

H• = p!p
!1, HBM

• = p∗p
!1
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In fact, H i(X,F) = HomC(X)(1, p∗(F)[i]).
We didn’t say anything about the definition of the formalism of six operations yet. The formal-

ism of six operations is the six functors defined above together with a collection of axioms for these
functors. There is no universal definition of the formalism of six operations since different authors
might have different set of axioms. They may include base change, projection formula, relative
purity, localization, homotopy invariance etc. On the other hand, these axioms are not minimal. In
the sense that one may take a smaller set of axioms that underlies the formalism of six functors.

3 Grothendieck Duality
Assume that f : X → ∗ is a smooth map. H i

c(X)∗ ≃ Hom(f!f
∗1[i],1) ≃ Hom(1, f∗f

!1[−i])
1. X is an orientable smooth manifold of dimension d. f !Q = ωX,Q[d] = Q[d] since X is

orientable. So H i
c(X,Q)∗ = Hom(1, f∗Q[d− i]) = Hd−i(X,Q) (Poincare Duality).

2. X is a proper smooth variety over k of dimension d. Then f !k ≃ ωX [d]. H i(X,OX)
∗ =

Hom(1, f∗ωX [d− i]) = Hd−i(X,ωX) (Serre Duality).

4 Derived algebraic stacks
Convention 4.1.0. We use the convention of [Kh22], derived algebraic stacks refers to derived
1-Artin stacks in [GR].

We introduce ’derived algebraic stacks’ for greater generality. One may replace ’derived algebraic
stacks’ by ’algebraic stacks’ in the following. Schemes, algebraic spaces are examples for algebraic
stacks.

Definition 4.1.1.

Schaff = {Derived affine schemes} ←→ {simplicial commutative rings}op

Definition 4.1.2. A derived algebraic stack X is a functor Schop
aff → Spc such that

1. It satisfies étale descent.

2. The diagonal X → X ×X is representable.

3. It admits a smooth covering of affine schemes.

Roughly speaking, a scalloped stack in the sense of [Kh22] is a nice class of derived algebraic
stacks such that it ’locally’ looks like a quotient stack. Scalloped stacks encode the information of
G-schemes and thus generalize the equivariant motivic homotopy theory.

We can construct the∞-category of motivic spectra SH(X ) for a scalloped stackX . Moreover,
the assignment X 7→ SH(X ) satisfies the formalism of six operations.

The cohomology spectrum with coefficient F ∈ SH(X ) is defined by

RΓ(X ,F) = MapsSH(X )(1X ,F)

This definition implicitly coincides with the definition of cohomology in section 2. For the
precise meaning of F , see [Kh22].
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Proposition 4.1.3 (Étale excision) . [Kh22, prop 5.10] Let f : X ′ → X be a representable étale
morphism which induces an isomorphism away from a quasi-compact open immersion j : U → X .
Then th commutative square

id j∗j
∗

f∗f
∗ g∗g

∗

is homotopy cartisian, where g : f−1(U)→ X .

Proof. By localization, it suffices to prove the square is cartisian after applying i∗ and j∗. This
follows by the smooth projection formula.

5 Algebraic K-theory
Recall that for a Waldhausen category C, we may construct a collection of Waldhausen cate-

gories Sn(C) for all n ≥ 0. It turns out that these Sn(C) fits together and thus form a simplicial
Waldhausen category S•(C). wS•(C) is , in each level, the subcategory of weak equivalences. We
call K(C) = Ω|wS•(C)| the algebraic K-theory space of C. Then Kn(C) = πn(K(C)) if n ≥ 0.
We can turn this space into a connective spectra by iterating this S• construction.

KB(R) is the nonconnective K-theory spectrum for a ring R. This is constructed from K(R)
using Bass construction. In fact K ≃ τ≥0(K

B).
These notions still make sense when C is a stable∞-category. So we may make the following

definition,

Definition 5.1.1. [Kh20] For a derived algebraic stackX , we define the Bass-Thomason-Trobaugh
K-theory spectra

KB(X ) = KB(Dperf(X ))

where Dperf(X ) is the stable∞-category of perfect complexes on X .

Indeed, the assignment X 7→ KB(X ) is a Nisnevich sheaf of spectra on the site of scalloped
derived stacks. However, it is not homotopy-invariant in general.

Definition 5.1.2. (Homotopy invariant K-theory [Kh20]) For a scalloped derived stack X , con-
sider the presheaf

KB : Smop
X → Spt

We define the homotopy invariant K-theory spectrum KH(X ) ≃ lim−→[n]∈∆op
KB(X ×An). Equiv-

alently, it is the global section of LA1KB.

Remark 5.1.3. A fundamental result of homotopy invariant K-theory is that KH is representable
in the motivic spectra, i.e., KH(X ) ≃ RΓ(X , KGL) for all scalloped stack X .

Now we are in the position to state the theorem.

3



Theorem 5.1.4 [Kh22, Corollary G] . The presheaf of spectra X → KH(X ) satisfies cdh de-
scent on the site of scalloped stacks.

Proof. Since KH is representable, it suffices to prove that F → f∗f
∗F satisfies cdh descent.

Since cdh topology is generated by Nisnevich squares and abstract blowup squares. We can check
descent for these squares individually. The descent for Nisnevich square is proposition 4.1.3. It
remains to prove for abstract blowup squares. This follows by the proposition 5.1.5 below.

Proposition 5.1.5 (Proper excision) . [Kh22, theorem 6.1] Let f : X → Y be a proper repre-
sentable morphism which induces an isomorphism away from a closed substack Z ⊂ Y , then the
commutative square

id j∗j
∗

f∗f
∗ g∗g

∗

is homotopy cartisian, where g : f−1(Z)→ X .

Proof. It suffices to prove the case f is projective. Then by localization, apply i∗ and j∗. The
statement follows from proper base change and smooth base change.

In [Kh22], Khan shows that, with some slight modification, the motivic homotopy theory for
scalloped stacks recovers the equivariant motivic homotopy theory in the sense of [Hoy17]. And
theorem 5.1.4 is a generalization of cdh decent in equivariant homotopy K-theory [Hoy20]. It is
possible to prove theorem 5.1.4 outside the framework of the formalism of six operations. See
remark 10.6 of [Kh22].
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